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1. Supplementary Results 

The non-significant relationship among the candidate genes predicted by Akaike Information 

Criterion (AIC).  Akaike Information Criterion (AIC) discovered no significant relationship (P > 0.05) 

between the mRNA expression of IL1B and that of IL10 and IL4 under basic or pathophysiological 

conditions. Also, under physiological or pathophysiological + physiological conditions, the expression 

data of IL1B had no significant relationship (P > 0.05) with TLR4 in BOECs culture (Table 2). 

Using AIC analysis, we identified no significant relationship (P > 0.05) between TNFA mRNA 

expression and (1) TLR4 mRNA expression under all experimental conditions and (2) IL4 expression 

under physiological, pathophysiological or pathophysiological + physiological conditions (Table 2). 

AIC analysis showed no significant association (P > 0.05) between TLR4 mRNA expression and 

(1) IL10 under all experimental conditions; (2) IL4 under basic, pathophysiological, or pathophysiological 

+ physiological conditions; and (3) TNFA, IL4, and IL10 expression under pathophysiological conditions. 

The AIC revealed that the mRNA expression data of IL4 had no significant relationship (P > 

0.05) with TNFA expression under basic conditions or IL10 expression under physiological conditions. 

There was no significant association between IL4 and TLR4 mRNA expression under pathophysiological 

or pathophysiological + physiological conditions (Table 2). 

The AIC showed no significant relationships (P > 0.05) between the expression data of IL10 and 

IL4 or TLR4 under physiological, pathophysiological, or pathophysiological + physiological conditions 

(Table 2). 

 

2. Supplementary Discussion  

In the present study, we investigated one linear (MLR) and two different nonlinear models (RSM and 

MLRSM) to determine the best model that could fit the experimental data. Then, using the best-observed 

model, we sought to find the gene that its expression data provided the best prediction for the expression 



of other genes under various experimental conditions. We also examined the relationship between the 

mRNA expression of a gene and the co-expression of other gene pairs.  

The mathematical form of response surface (RSM) function is also simple. But, the second-order 

terms of the input variables in this model may give more exact results, compared to the MLR. Because of 

the higher-order relations among genes, the linear models, such as MLR, showed just the main effects of 

genes but could not detect the nonlinearity among the genes
1
. Also, the MLR does not cater for 

multicollinearity problem (multiple correlations)
2,3

. If the independent variables show a high correlation 

with the main response and with each other, then multicollinearity problems will occur
2
. The RSM model 

as a least-squares modeling-based technique considers the quadratic (or cubic) effects and complex 

interactions between gene pairs
1
. So, the RSM can reduce the multicollinearity problem (based on the 

present ordinary least squares (OLS) estimator that uses the transformed data as used in this study)
3,4,5

. 

Thus, besides detecting the independent effect of variables over a response, RSM can detect the relations 

among the variables
5,6

.  

We discovered that, the scenario 2 of MLRSM model had the highest correlation (d) and 

goodness-of-fit (EF) and the lowest error (RMSE), compared to the MLR, RSM and MLRSM (scenarios 1 

to 3). Also, the scatterplots of the predicted and experimental data confirmed a strong nonlinear 

relationship among the candidate genes. Considering the scatterplots, scenario 2 showed a better 

prediction and evaluated a proper coefficient for the input data points. Thus, the MLRSM scenario 2 

outperformed the MLR, RSM, scenarios 1 and 3 of MLRSM in showing prediction accuracy. These 

findings suggested the MLRSM scenario 2 was a robust model for detecting high-order nonlinear 

relationships among genes. Scientific data show both linear and nonlinear responses to the physiological 

or non-physiological conditions in biological events, such as gene-gene interactions
7,8,9

. Solvang et al.
10 

reported a linear relation among genes related to the metabolism. But, they found a nonlinear relationship 

among genes involved in the immune system (for example, IL2 signaling)
10

. Similarly, our results showed 

a strong nonlinearity among the present immune-related genes. To the best of our knowledge, the 



MLRSM model was used for the first time to detect the relations among genes. However, several previous 

studies have applied the RSM model to examine the changes in gene expression under experimental 

conditions
11

. For example, Howard et al.
12

 used the RSM model to determine gene-gene relationship 

existing among the quantitative trait loci (QTLs). 

Next, in order to evaluate the prediction accuracy of the MLRSM scenario 2 as well as to explore 

the main gene expression pattern, we input the scenario 2-predicted data into the nonlinear-based PCA
13

. 

The nonlinear PCA showed a good association between each predicted data point and corresponding 

actual data point of IL10, IL4, TLR4, IL1B, and TNFA (RMSE values were low and ranged from 0.004 to 

0.209 for these genes). Also, the nonlinear PCA showed that the mRNA expression of candidate genes 

under experimental conditions (physiological, pathophysiological, or pathophysiological + physiological 

conditions) was similarly predicted by the predictor (the MLRSM scenario 2). This suggested the 

similarity of the gene expression patterns within samples obtained from the same experimental conditions, 

implying a proper preparation and choice of BOECs samples
14

. 

 

3. Supplementary Methods  

3.1 The detailed description of the models. 

Multiple-linear regression (MLR).     To make this model easy to understand, we explain the 

model with three input variables. In the following equation (Supplementary Eq. S1), g1, to g3 are the 

gene expression data of genes (input variables), for example, IL10, IL4, and TNFA. The output or 

predicted gene (G), such as IL1B, can be estimated in a linear format using the MLR model 

(Supplementary Eq. S1): 

3322110 gggG              (S1) 

where 0  to 3 are the unknown coefficients.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Howard%20R%5BAuthor%5D&cauthor=true&cauthor_uid=28720710


 

Response surface method (RSM).     To make the RSM model easy to understand, we explain this 

model with three input variables. As, in the following equation (Supplementary Eq. S2), g1, to g3 are the 

mRNA expression data (input variables), for example, IL10, IL4, and TNFA. The output or predicted 

target gene (G), such as IL1B, can be estimated in a nonlinear format using the RSM model 

(Supplementary Eq. S2): 

2
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1113322110 ggggggggggggG    (S2) 

Using the second-order basis polynomial function in the RSM model (Supplementary Eq. S2), 

we can, therefore, improve the nonlinear relations in predicting complex problems, i.e., the predicted 

target gene (G). Compared with the linear relation (Supplementary Eq. S1), the nonlinear formulation-

based second-order polynomial function (Supplementary Eq. S2) can provide a proper relationship for 

estimating the predicted target gene (G). Because the RSM model comprised a one-step process, the 

model forms a general relation between the input (g) and output (target gene) variables (G)
15

. This infers 

the limits of RSM in dealing with many correlated responses and in estimating the prediction accuracy
16

. 

 

Multi-layer response surface method (MLRSM).     To make this model (scenario 2) easy to 

understand, we explain the two-step process of this model with three input variables. In the following 

equation (Supplementary Eq. S3), g1 to g3 were the expression data of input genes, for example, IL10, 

IL4, and TNFA (Note: in Fig. 1d, the input genes were shown as x1 to xn). As mentioned before, the 

model comprised two calibration processes. At the first, we calibrated the hidden layer (y1 to y3) of the 

model using the input genes (x1 to x3, Fig. 1d) which are equivalent to g1 to g3 in Supplementary Eq. S3 

to Supplementary Eq. S5. The total number of the elements in the hidden layer (M) was calculated based 

on the number of input genes (NS) and a total number of genes (n) as 
!)!(

!

NSNSn

n
M


  where ! is the 

factorial operator and NS  n. For example, we calculated M = 4 for the scenario 1 where n = 4 and NS = 



1 (i.e., 4
!1)!3(

!4

!)!(

!





NSNSn

n
M ); M = 6 for the scenario 2 where n = 4 and NS = 2; and M = 4 for 

the scenario 3 where n = 4 and NS = 3. 

The first calibrating process was employed to predict the hidden layer elements (y) (Fig. 1d and 

Fig. 2a). So, using the following nonlinear relations (Supplementary Eq. S3 to Supplementary Eq. S5) 

and the input datasets (g1 to g3), we first estimated each element of the hidden layer (y) in the scenario 2 of 

MLRSM. 
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Next, the output gene (G) was calibrated based on the handling calibrated dataset (the hidden 

layer) (y1 to y3). So, the second calibrating process was utilized to predict the output gene expression (G) 

(Fig. 1d and Fig. 2b). Using these estimated nonlinear forms of the elements (Supplementary Eq. S3 to 

Supplementary Eq. S5) and the nonlinear polynomial basis functions (Supplementary Eq. S6), we can, 

therefore, predict the expression of the output (target) gene (G). 
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 (S6) 

Using this relation (Supplementary Eq. S6), the output gene (G) was calibrated based on the nonlinear 

predicted input data (the hidden layer y1 to y3) (Supplementary Eq. S3 to Supplementary Eq. S5). This 

nonlinear form of the mathematical formulation (Supplementary Eq. S6) provided a highly nonlinear 

relation compared to the linear format in Supplementary Eq. S1 and nonlinear basis second-order form 



in Supplementary Eq. S2. As seen in Supplementary Eq. S3 to Supplementary Eq. S5, the five-order 

polynomial basis functions were applied in the first-calibration procedure to get the hidden layer 

elements. The calibrated input data (the hidden layer y1 to y3) provided a nonlinear relation between the 

output gene (G) and the input gene (g1 to g3). This type of modeling approach could separate the effect of 

each element (y) which was calibrated using the actual input data (g). But, the MLR and RSM could not 

offer such a conclusion in their calibrated procedures
15

. 

 

3.2 The procedure of the calibration. 

The main effort of the gene calibration process (Supplementary Eq. S1, Supplementary Eq. S2 

and Supplementary Eq. S3 to Supplementary Eq. S6) was to find the unknown coefficients that best fit 

the mathematical model on the database. We used the ordinary least squares (OLS) to determine the 

unknown coefficients of the polynomial functions in Supplementary Eq. S1, Supplementary Eq. S2 

and Supplementary Eq. S3 to Supplementary Eq. S6. The errors between the predicted data of gene 

(G) and the estimated polynomial basis function ( x)x ()( pf  ) was obtained using the following 

relation (Supplementary Eq. S7)
17

: 

)]([]([  x)Gx)G pp T   (S7) 

where T is the transpose operator.   is the vector of unknown coefficients. x)(p  is the polynomial basis 

functions obtained using ith dataset in which igggp ],,,1[( 321ix) for MLR by Supplementary Eq. S1, 
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the first element of the hidden layer y1 by Supplementary Eq. S3, etc. The unknown coefficients can be 

directly approximated by minimizing the error and using the following relation (Supplementary Eq. 

S8)
18

: 



])()()( Gxxx
T1T [p]p[p   (S8). 

Thus, the calibrated data can be obtained by approximating the unknown coefficients in 

Supplementary Eq. S8 for the dataset tx  using the following relation (Supplementary Eq. S9): 

]))()()()(( Gxxxx
T1T

t [p]p[ppG  . (S9) 

The calibration process of the MLR, RSM, and MLRSM models was done using the same simple 

procedure; while, the high-order polynomial basis function was based on a two-step process in 

MLRSM and provided high-performance flexibility for the calibration of genes. Thus, the hidden 

layer-based dataset of genes can show the effect of a dataset on detection of the calibrated genes using 

a highly nonlinear relation. The best agreement of the input dataset of genes can be extracted by this 

type of modeling approach in the calibration process. So, the nonlinear correlations among the genes 

can be evaluated more accurately based on the nonlinear form of the polynomial basis function 

compared with the traditional RSM and MLR models. 

 

3.3 Akaike Information Criteria (AIC)  

AIC, as an alternative criterion, was utilized to select the effective input genes on the target gene. The 

null hypothesis of an input gene can be examined based on P-values and ΔAIC by Murtaugh’s relation as 

follows
19

: 

)(2)1()2Pr( 12
2 kPFAICkAICP
k

k  




   
(S10) 

Where, P is the P-value for the null hypothesis of input genes which indicated removing all set of the 

hidden elements which are connected to the null input gene. k is the number of null genes and 2
k  is chi-

square distribution function where k is degrees of freedom obtained 1.84 for k=1 and P=0.05
19

. AIC  is 

the differences in Akaike’s information criterion based on all input genes (RMSE1) with (n)-variable (i.e., 

3) and null gene (RMSE2) with (n-1)-variable (i.e., 3) where RMSE is root mean square errors as 

)(3)(4 21 RMSELnRMSELnAIC  20
, and Ln is the logarithmic operator. If AIC  is less than the chi-



square statistics (e.g. 1.84 for k=1 and P=0.05) then the input gene ith can be removed from the input data 

set for modeling target gene.
 

 

3.4 User-friendly codes employed for MLRSM scenario 2 in MATLAB.     

We implemented our approach in MATLAB using approximately 120 lines of code as shown in 

the following lines. 

clc 

clear all 

load data % data of genes for calibration   

NG=1 % number of target gene 

%% data in input and output basis genes  

for i=1:size(X,2) 

    if i~=gene 

        x(:,k)=X(:,i); 

    else 

        y(:,1)=X(:,gene); 

    end 

end 

nb=size(x,1); 

% give the pattern of genes for the hidden elements 

in=[1 2 

    1 3 

    1 4 

    2 3 

    2 4 

    3 4]; 

%######################### 

Y=y(1:nb,1); 

for j=1:size(in,1) 

    for i=1:size(in,2) 

        S(:,i)=xx(1:nb,in(j,i)); 

    end 

clear model1 

model1=RSM(S,Y);% calibrate in the first stage to give the hidden elements 

aa(:,j)=model1; 

X1(:,j)=PRSM(S,model1);% predicted handling data for target gene  

end 

model=RSM(X1,Y); %calibrate the target gene using hidden handling data  

Yp=PRSM(X1,model); %predicted the target gene  

%#########################subroutine RSM################ 

function [a]=RSM(x,y) 

np=size(x,1); 

nv=size(x,2); 

for p=1:np 



    m=1; 

    for i=1:nv+1 

        if m==1 

            PX(p,m)=1; 

        else 

            PX(p,m)=x(p,i-1); 

        end 

        m=m+1; 

    end 

    if or>=2 

        for i=1:nv 

            for j=i:nv 

                PX(p,m)=x(p,i)*x(p,j); 

                m=m+1; 

            end 

        end 

        if or>=3 

           for i=1:nv 

            for j=1:nv 

                PX(p,m)=x(p,i)^2*x(p,j); 

                m=m+1; 

            end 

           end  

        if or>=4 

           for i=1:nv 

            for j=1:nv 

                PX(p,m)=x(p,i)^3*x(p,j); 

                m=m+1; 

            end 

        end  

        end 

        end 

        end 

    end 

end 

a=(PX'*PX)^-1*(PX'*y); 

end 

%#########################subroutine PRMS ##########################  

function Ev=PRSM(xv,a) 

npv=size(xv,1); 

nv=size(xv,2); 

for p=1:npv 

    m=1; 

    for i=1:nv+1 

        if m==1 

            PXv(p,m)=1; 

        else 

            PXv(p,m)=xv(p,i-1); 

        end 

        m=m+1; 



    end 

    if or>=2 

        for i=1:nv 

            for j=i:nv 

                PXv(p,m)=xv(p,i)*xv(p,j); 

                m=m+1; 

            end 

        end 

        if or>=3 

           for i=1:nv 

            for j=1:nv 

                PXv(p,m)=xv(p,i)^2*xv(p,j); 

                m=m+1; 

            end 

           end  

        if or>=4 

           for i=1:nv 

            for j=1:nv 

                PXv(p,m)=xv(p,i)^3*xv(p,j); 

                m=m+1; 

            end 

        end  

        end 

        end 

        end 

        end 

        end 

Ev=PXv*a; 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.5 Supplementary Tables 

 

         

Genes Xmean Sx CV Csx Xmin Xmax 

Xmax/Xmin 

ratio 

IL1B 2.41 E-3 4.93 E-3 2.056 2.089 4.52E-8 0.0196 4.34E+5 

TNFA 7.42 E-3 1.09 E-2 1.468 2.626 4.26E-5 0.0547 1.28E+3 

TLR4 5.93E-4 4.23E-4 0.713 0.997 1.66E-6 0.0021 1.27E+3 

IL10 4.30E-5 8.57E-5 1.991 3.107 2.31E-10 4.92E-4 2.13E+6 

IL4 4.11E-5 3.57E-5 0.870 1.698 1.012E-7 2.13E-4 2.10E+3 

Supplementary Table S1. Statistical analysis of the mRNA expression datasets. Xmean is the mean 

(average); Sx is the standard deviation of variables; CV is the coefficient of variations as Xmean/Sx; Csx is 

the skewness of the data; Xmin and Xmax are respectively the maximum and the minimum of the data points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gene   Sequence of nucleotide (5'-3') * Accession No. Tm (C) 
Product size 

(bp) 

TLR4 F CTTGCGTACAGGTTGTTCCTAA NM_174198.6 56 153 

  R CTGGGAAGCTGGAGAAGTTATG       

IL1B F ATGAAGAGCTGCATCCAACA NM_174093.1 56 196 

  R ATGGAAGACATGTGCGTAGG       

IL4 F GCCACACGTGCTTGAACAAA  NM_173921.2 56 63 

  R TGCTTGCCAAGCTGTTGAGA       

IL10 F TTCTGCCCTGCGAAAACAA NM_174088.1 58 85 

  R TCTCTTGGAGCTCACTGAAGACTCT       

TNFA F TGACGGGCTTTACCTCATCT NM_173966.3 56 221 

  R TGATGGCAGACAGGATGTTG       

ACTB F CCAAGGCCAACCGTGAGAAAAT K00622 58 256 

  R CCACATTCCGTGAGGATCTTCA       

Supplementary Table 2. Bovine primers used in real-time PCR. 

* F, forward; R, reverse 
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